
Page 1

Private Eye® Display Controller Programmer’s Manual

1. Overview 2
2. Modes 3
2.1 Text Modes 3
2.1.1 Display Memory Format 3
2.1.2 Characters and Attributes 3
2.1.3 Cursor 4
2.1.4 Initialization 4
2.2 CGA Graphics Modes 5
2.2.1 Display Memory Format 5
2.2.2 Initialization 5
2.3 Extended Graphics Mode 6
2.3.1 Display Memory Format 6
2.3.2 Initialization 6
3. Options 7
3.1 Right/Left Eye 7
3.2 Bright/Dim 7
3.3 Power-Down Mode 7
3.4 Underline Mode 7
3.5 Determining Presence of Private Eye 7
3.6 Downloadable Character Sets 8

Appendix 9
A. Registers 9
A. 1 External Registers 9
A.1.1 Mode Control Register 9
A. 1.2 CRT Status Register 9
A.2 CRTC Registers 10
A.2.1 Cursor Start & End Registers 10
A.2.2 Start Address Registers 11
A.2.3 Cursor Location Registers 11
A.2.4 Light Pen Registers 11
A.2.5 Extended Mode Register 11
A.2.6 RTSI Command Register 11
B. Sample Code 12
B. 1 Initialization 12
B.2 Drawing Characters in Text Mode 12
B.3 Setting Pixels in Extended Graphics Mode 12

April 22, 1991



Page 2

1. Overview

The purpose of this document is to help you to write software for the Private Eye Display Controller.

This document describes Reflection Technology Inc.’s

Part No. 213-008-00

labeled: “Aox VCGA 06205-001”
with the two bug-fix PALs implemented. These PALs are installed on all PEVA boards shipped by Reflection
Technology. The PALs contain circuitry that is required in order to support reliable operation of the Private
Eye display system. Infcmnation on these bug-fix PALs are available upon request from Reflection Technology.

The software interface to the PEDC is through two mechanisms: the display memory, and the configuration
registers. The PEDC displays the contents of the display memory in the Private Eye, in a format governed by
the contents of the configuration registers

The PEDC is designed to emulate an IBM CGA display controller as closely as possible. Applications that use
IBM text modes and CGA graphics modes (40 and 80 column) will run without modification.

For graphics mode, the CGA graphics modes (640 x 200 and 320 x 200) are supported, but it is recommended
that new applications use the 720 x 280 bitmap mode.

The display memory (or frame buffer) of the PEDC is, by default, mapped to b800 :0000 (or dOOO :0000 if
the PCMODE jumper is set to 2-3)on RTI’s PEVA card for the IBM-PC bus. For other machines, see the
machine’s documentation for the base address of the frame buffer.

Note that the Private Eye Display Controller, unlike the standard IBM CGA display controller, does not cause
the display to flicker or flash if the processor updates the display memory during the drawing time.

For register accessing instructions, register numbers, and register bit definitions, see Appendix A in the back of
this manual. For electrical and physical data on the PEDC, see the Private Eye Display Controller Specification.



Page 3

2. Modes

2.1 Text Modes

In Text Mode, the screen has 25 lines of either 40 or 80 characters of text. Each displayed character has its
own unique set of attributes, specified in eight bits. There is a flashing cursor that can be positioned on any
displayed character position. The shape of the cursor can be changed from software. There are 256 displayable
characters; 128 are standard ASCII; the rest are IBM graphics characters. The standard graphics characters
contain symbols used to create text windows and boxes.

2.1.1 Display Memory Format

The display memory contains 2000 (for 40 column mode) or 4000 (for 80 column mode) displayed bytes. Each
character position on the screen is represented by two bytes (one word) of display memory. The top left screen
location is the first one in memory, with the next character on the line coming next. The first character on the
second line comes immediately after the last character on the first line.

There is sufficient display memory in Text Mode for 4 (80 column) or 8 (40 column) screens of text. With the
Start Address Register you can specify the starting address of the displayed memory area. The value written to
the Start Address Registers represents the word offset between the display memory base address and the
address of the top left corner of the screen. This technique can be used to pre-format up to eight text screens;
each can be instantly displayed by simply changing the Start Address Registers.

There is sample code in Appendix B of this manual which shows how to write characters on the screen in Text
Mode.

2.1.2 Characters and Attributes

Each character to be displayed on the screen is represented by two bytes of frame buffer memory: the low-
order byte contains the ASCII value of the character to be displayed, and the high-order byte contains the
attribute byte for the character. The following are good values to use for particular character attributes:

Appearance
0x00 All black
0x01 Underline
0x07 Normal
0x09 Bold Underline
0x0f Bold
0x70 Reverse
0x77 Alired
0x78 Reverse Bold
0x81 Flashing Underline
0x87 Flashing
0x89 Bold Flashing Underline
0x8f Flashing Bold
0x00 Reverse Flashing
0xf 7 Flashing Red
0xf 8 Reverse Flashing Bold

Text Mode Character Attributes



Page 4

2.1.3 Cursor

The cursor is a reverse-video block, which appears superimposed over the desired character on the display. It is
easy to move the cursor from one place to another on the screen, and to change its appearance. The cursor is
displayed as a flashing block, on top of the character where the cursor is positioned. The block extends from
the left edge to the right edge of the character.

The lower five bits of the Cursor Start Register set the scan line within the character of the top of the block.
The lower five bits of the Cursor End Register set the scan line of the bottom of the block.

The cursor flashes unless bits 6 and 5 of the Cursor Start Register are 01, in which case the cursor is not
displayed. To make the cursor not visible, you can also either move it to a location not displayed on the screen,
or set the Cursor Start Register to a value greater than the Cursor End Register.

The Cursor Location Registers are used in Text Mode to control the position of the cursor. The 16-bit number
is the offset of the cursor from the beginning of the displayed memory (not the beginning of the screen; see the
discussion about the Start Address Registers in Section 2.1.1). For example, the cursor will be at the top left
corner of the screen when the value of the Cursor Location Register is the same as the value of the Start
Address Register.

2.1.4 Initialization

This is the initialization sequence for Text Mode. Flashing and underlining are enabled. Please note that the
initialization routines in this manual work only for the Private Eye Display Controller. Other CGA display
controllers have other registers that need to be initialized. See the documentation for your particular display
controller for details.

Sample code for initializing the Private Eye Display Controller is contained in Appendix B of this manual. Note
that since most register accesses appear in pairs, the sequences are shown in two columns; read across.

register value register value
0x04 0x1e 0x05 OxlO SetUnderline Enable bit
0x04 0x0a 0x05 OxOO Cursor start is 0
0x04 OxOb 0x05 0x07 Cursor End is 7
0x04 OxOc 0x05 OxQO Start Address is O
0x04 OxOd 0x05 OxOO
0x04 OxOe 0x05 OxOO Cursor Location is O
0x04 OxOf 0x05 0x00
0x08 OxOO 0x08 0x28 (4Ocolumns)OR

0x29 (80 columns)



Page 5

2.2 CGA Graphics Modes
The CGA graphics modes are not recommended for new software, because of their low resolution and their
difficult pixel addressing scheme. This mode is displayed on the center 640 x 200 pixels of the Private Eye’s
720 x 280 screen.
The 320 x 200 mode nominally supports four colors. A simple pixel substitution algorithm is used to simulate
gray scale patterns for this mode.

2.2.1 Display Memory Format

CGA Graphics Mode Display Format

2.2.2 Initialization
0x04 0x1e 0x05 0x00 ClearExtendedModeRegister
0x04 0x0c 0x05 OxOO clearStartAddressRegister
0x04 0x0d 0x05 0x00
0x08 0x00 0x08 0x0a (320x200)OR

0x1a (640x 200)



Page 6

2.3 Extended Graphics Mode

Extended Graphics Mode shows a 720h x 280v, horizontally oriented, non-interlaced bitmap. It displays the
first 25200 bytes of the frame buffer memory on the full area of the Private Eye display. The Start Address
Registers must be preset to a certain value, and cannot be used in the same manner as in Text Mode. Double
buffering is not supported.

Each bit in the display memory corresponds to one pixel on the Private Eye display. A ‘1’ bit is displayed as a
red (illuminated) pixel, and a ‘0’ bit is displayed as a black (dark) pixel. Example code for setting pixels on the
display in Extended Graphics Mode is in the Appendix of this manual.

MS-DOS users: if you use this mode, you must reset the Extended Graphics Mode bit in the Extended Mode
Register when your program exits; otherwise the MS-DOS BIOS will not be able to configure the display for
Text Mode.
The PEDC starts to update the Private Eye’s entire display memory when the processor writes to the display
memory.

2.3.1 Display Memory Format

The display memory format for Extended Graphics Mode is that of a traditional raster display; see the figure
below.

Graphics Mode Screen Format

2.3.2 Initialization
0x04 0x1e 0x05 OxOO Clear Extended Mode Register
0x04 0x0c 0x05 0x21 SetStartAddressRegister
0x04 0x0d 0x05 0x98
0x08 0x00 0x08 0x1e Set Mode Control Register
0x04 0x1e 0x05 0x01 Set Extended Mode Register



Page 7

3. Options

When configuring the Private Eye display, is is often necessary to change one bit in a write-only register. To do
this, one must maintain a copy of the register as a variable in your software, and write it to the display
controller when it is changed. The examples below all use this mechanism.

3.1 Right / Left Eye
Private Eye systems should have a method for inverting the screen image, so that left-eyed people can use
them. To invert the image in the Private Eye display, set the Left Eye Enable bit (0x80) in the RTSI
Command Register shadow variable, then write the variable to the RTSI Command Register.

register value
0x04 0x1f 0x05 newRTSJ CommandRegister value

3.2 Dim Mode
Private Eye systems should have a method for dimming the screen image, so that the Private Eye can be used in dark
environments without destroying the user’s night vision. To dim the image in the Private Eye display, set the
Dim Enable bit 0x10 in the RTSI Command Register.

register value register value

0x04 0x1f 0x05 new RTSI Command Register value

3.3 Power-Down Mode
To put the Private Eye in its lowest power mode, set the Standby Mode Enable bit (0x40) in the RTSI
Command Register. In this mode, the Private Eye’s mirror stops moving, soit will take a couple of seconds for
the mirror to start up before the image is visible again after resetting the Standby Mode Enable bit.

register value register value
0x04 0x1f 0x05 new RTSJ Command Register value

3.4 Underline Mode
In some situations, it is advantageous to use the underline feature in text mode. With software that has user-
definable character attributes, Underline Mode can be used to good advantage. This mode is normally turned
off. The following register sequence turns it on:
register value register value
OxO 4 0x1e 0x05 0x10 Set Underline Enable bit

3.5 Determining Presence of Private Eye
In some circumstances, it may be valuable to detect whether the Private Eye display is actually connected. For
instance, you may put the computer into a low-power mode if the Private Eye is not connected, since the user
cannot be looking at the display if it isn’t plugged in. To detect the presence of the Private Eye, look for
transitions in the RTSI Ready signal in bit 4 of the CRT Status Register.



Page 8

3.6 Downloadable Character Sets

It is possible to replace the font EPROM on the PEVA card with an SRAM chip, enabling the use of
downloadable fonts.

The character generator contains two fonts: the normal font, and the bold font. Each font contains 256
characters. Each character is constructed from a 9 x 11 cell contained in 32 bytes, made up of a 16 x 16
block of bits. The organization of the character in the block is shown in the figure below. The cell’s bits are
set to 1 for pixels that are to be illuminated, and 0 for dark pixels. The bits in the unused area are ignored,
although it is recommended that they be set to 0.

For the standard Private Eye font, the bottom row and left column of the cell are blank for characters that do

not touch each other. Characters are 8 rows tall, with 2 rows used for descenders.

The normal font occupies the first 8K bytes of the character generator, and the bold font occupies the second
8K. Each character in the font is stored in 32 consecutive bytes, and the characters are arranged in ascending
order.

Character Generator Cell Format
In order to use the downloadable character set option, you must replace the 27128 EPROM on the PEVA card
with a 32K x 8 static RAM, l00ns access time (Toshiba TC55257APL-l0 or equivalent). If you have an older
board with two sockets, not that the EPROM character generator goes in the upper of the two sockets on the
board; newer boards mily have one socket.

To download a new font, set the Character RAM Access Enable bit in the Extended Mode register:
register value register value
0x04 0x1e 0x05 0x08 Set Character RAM Access Enable bit

At this point, the display controller’s memory space is mapped into the character generator RAM. Write the
font to the display memory. When you’re done, reset the Character RAM Access enable bit:

register value register value
0x04 0x1e 0x05 0x00 Reset Character RAM Access Enable bit



Page 9

Appendix

A. Registers
Note that if the PEDC is configured for shadow mode, it is not possible to read back the Contents of the
PEDC’s registers. This means that the procedure for determining the presence of a Private Eye will not work if
the PEDC is configured for Shadow Mode.

A.1 External Registers
The PEDC’s registers are located starting at 3d0 (or 310 if the PCMODE jumper on the PEVA card is set to 2-
3) of the 1./0 space in MS-DOS machines, accessible using the inportb and outportboperators provided with
most development environments. To generate the address for a particular register, add the starting location to
the Register Number. For non-MS-DOS implementations, see the accompanying documentation to determine
how to access the PEDC’s registers.
Register NameAddress
Mode Control 0x0 8 Write-only
CRT Status 0x0A Read-only
CRTC Address 0x04 Write-only
CRTC Data 0x05 Read/Write

A.1.1 Mode Control Register

The Write-Only Mode Control Register is used to control the PEDC’s CGA-compatible modes. In order to put
the PEDC into one of these modes, the HorizontalMode Enable bit in the Extended Mode Register must be off.
Also note that with these modes, other registers must be set to appropriate values before the display will show
the desired information.

Value Mode
0x00 Blank Display
0x08 40 x 25 text mode, no flashing
0x09 80 x 25 text mode, no flashing
0x0a 320 x 200 CGA graphics
0x1a 640 x 200 CGA graphics
0x28 40 x 25 text mode, flashing enabled
0x2 9 80 x 25 text mode, flashing enabled

A.1.2 CRT Status Register
The Read-Only CRT Status Register contains bits indicating the status of the horizontal and vertical sync
signals. In the PEDC, these bits are simulated for compatibility with the standard CGA display controller. There
is also a bit that returns the active-low state of the RTSI Ready signal. The Ready signal indicates the position
of the mirror in the display, and when it is allowed to transmit data to the display. This is useful for
synchronizing screen updates, and for determining whether or not a Private Eye display is plugged in. See the
RTSI Specification for more details on the RTSI Ready signal.

bit Settings
7 X
6 X
5 x
4 /RTSI Ready
3 Simulated Vertical Sync
2 X
1 x
0 Simulated Horizontal Sync



Page 10

A.2 CRTC Registers

For compatibility with the CGA display controller, most of the PEDC’s internal registers are accessed through
two external registers: the CRTC Address Register, and the CRTC Data Register. To write a CRTC register,
the register number is written to the CRTC Address Register, and the desired register contents are written to
the CRTC Data Register. To read a CRTC register, write the register number to the CRTC Address Register,
then read the contents of the internal register from the CRTC Data Register.

There are two extra registers in the PEDC (in italics below) that are not present in standard CGA display
controllers. Most of the unique features of the Private Eye are accessible through these registers.
Cursor Start 0x0a Write-only
Cursor End 0x0b Write-only
Start Address High 0x0c Write-only
Start Address Low 0x0d Write-only
Cursor Location High 0x0e Read/Write
Cursor Location Low 0x0f Read/Write
Light Pen High 0x10 Read-only
Light Pen Low 0x11 Read-only
Extended Mode Register 0x1e Read/Write
RTSI Command Register 0x1f Read/Write

A.2.1 Cursor Start and End Registers

These registers are used to control the appearance of the cursor in text modes. In graphics modes, the contents
of these registers is ignored. The cursor is a flashing area on top of the desired character, extending from the
left edge to the right edge of the character. Bits 4-0 of the Cursor Start Register sets the scan line within the
character of the top of the block. Bits 4-0 of the Cursor End Register sets the scan line of the bottom of the
block. In addition, bits 5 and 6 of the Cursor Start Register control the appearance of the cursor: this cursor is
not displayed if bit 5 is 1 and bit 6 is 0. Two common examples of cursors:

A.2.2 Start Address Registers

The Write-Only Start Address Registers are used in text mode to set the start of the active frame buffer. The
contents of these registers, as a 16-bit value, is multiplied by two and added to the base address to give the
actual starting address of the text mode display memory. In CGA Graphics modes, both these registers must be
set to zero. In Extended Graphics Mode, these registers must be set to predefined values (see Section 2.3).



Page 11

A.2.3 Cursor Location Registers

The Read/Write Cursor Location Registers are used in text mode to control the position of the cursor. They are
ignored in graphics modes. The 16-bit number is the offset of the cursor from the beginning of the display
memory (not the beginning of the screen). For example, if the Start Address Registers ate set to a non-zero
value, the cursor will be at the top left corner of the screen when the value of the Cursor Location Register is
the same as the value of the Start Address Register. The contents of these registers are ignored in graphics
modes.

A.2.4 Light Pen Registers

The Read-Only Light Pen Registers are supported only for compatibility with standard CGA software. Since
the CGA Mode Control Register is Write-Only, some MS-DOS software uses these registers to determine the
current mode. This is done by waiting for the beginning of the vertical blank interval (by watching the Vertical
Sync bit in the CRT Status Register) and examining the contents of the Light Pen Registers at that instant. The
contents will be different, depending on the mode.

A.2.5 Extended Mode Register

The contents of the Extended Mode Register controls several aspects of the PEDC’s operation that are not part
of the CGA standard. All the bits in this register are active-high.
bit Settings
7 Reserved (must be 0)
6 Continuous RTSI Update Mode Enable
5 Reserved (must be 0)
4 Underline Mode Enable
3 Character RAM (Downloadable Font) Access Enable
2 Reserved (must be 0)
1 Reserved (must be 0)
0 Horizontal Mode Enable

A.2.6 RTSI Command Register

The RTSI command register’s contents are transmitted to the Private Eye when the register is written to by the
host.
In Horizontal Graphics Mode, the contents of the RTSI Command Register are not reliably transmitted to the
Private Eye display. Write the register in a loop, so that it eventually gets transmitted. You must determine
empirically how many times to write the register so that it always gets through.
bit Settings
7 Left Eye Mode Enable
6 Standby Mode Enable
5 Display Blank Enable
4 Low Intensity Enable
3 Reserved (must be 0)
2 Reserved (must be 0)
1 Reserved (must be 0)
0 Reserved (must be 0)



Page 12

B. Sample Code
This code is written in C Everyone except those using MS-DOS ‘tiny’ or ‘small’ memory models can ignore the
‘far’ keyword.

B.1 Initialize Extended Graphics Mode

typedef struct regval

unsigned reg, val;
regval;

regval peinit[] = {{0x04, 0x1e), {0x05, OxOO), {0x04, OxOc), {0x05, 0x21}, {0x04, OxOd},
(0x05, 0x98}, {0x08, 0x00}, {0x08, Oxiel, (0x04, Oxie), {0x05, 0x01});

unsigned PERegs — Ox3dO;

/* initialize PEDC */
for (i = 0; i < 10; i++)
outportb(PERegs + peinit(i) .reg, peinit[i] .val);

B.2 Write characters in Text Mode

int x, y;
int cols = 80; /* maybe 40...
unsigned char far *PEFBAddr = (unsigned char far *) Oxb8000000; unsigned
char far *ptr;

X=y

/* draw the character (ch) and the attribute (attr) at (x, y) */
ptr = PEFBAddr + (((cols * y) + x) * 2);

*ptr++ = ch;
*ptr = attr;

B.3 Set (or Reset) Pixels in Extended Graphics Mode
int x, y; 0xb8000000;
unsigned char far *PEFBAddr = (unsigned char far *) unsigned char far *ptr;

X=y

ptr = PEFBAddr + ((90 * y) + (x I 8));
*(ptr) j= 0x80 » (x % 8); /* turn on the pixel */

or

*(ptr) &= -(0x80 » (x % 8)); /* turn off the pixel */


